Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Zhu-Yan Zhang,^a Shan Gao,^a* Li-Hua Huo, Hui Zhao, A Jing-Gui Zhaoa and Seik Weng Ngb

^aCollege of Chemistry and Chemical Technology, Heilongjiang University, Harbin, 150080, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia

Correspondence e-mail: shangao67@yahoo.com

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.002 \text{ Å}$ R factor = 0.029wR factor = 0.078 Data-to-parameter ratio = 14.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Hexaaquanickel(II) bis[(4-oxo-4*H*-pyridin-1-yl) acetate] dihydrate

The title complex, $[Ni(H_2O)_6](C_7H_6NO_3)_2 \cdot 2H_2O$, was synthesized by the reaction of Ni(CH₃COO)₂·4H₂O and (4-oxo-4*H*pyrindin-1-yl)acetic acid in an aqueous solution. The nickel^{II} ion, which lies on a center of symmetry, is coordinated by six water molecules to form an octahedron [Ni-O = 2.047 (1)-2.057 (1) Å]. A three-dimensional supramolecular framework is formed via hydrogen bonds between the anions and cations.

Received 30 March 2004 Accepted 1 April 2004 Online 9 April 2004

Comment

A recent study documented the structure of hexaaquazinc(II) bis[(4-oxo-4H-pyridin-1-yl)acetate] dihydrate (Gao et al., 2004). The nickel(II) analog, (I), was synthesized under similar reaction conditions in this study. The structure of the Zn complex has been presented in detail; a similar description applies to the present isomorphous complex (Fig. 1).

$$\begin{bmatrix} H_{2}O_{\bullet} & OH_{2} \\ H_{2}O_{\bullet} & OH_{2} \\ OH_{2} & OH_{2} \end{bmatrix}^{2+} \begin{bmatrix} O\\ O\\ N \\ OH_{2} \end{bmatrix} \cdot 2H_{2}O$$

The cation lies on a center of symmetry. A three-dimensional supramolecular network is formed by intermolecular hydrogen bonds between water molecules and O atoms of (4-oxo-4*H*-pyridin-1-yl)acetate (Table 1 and Fig. 2).

Experimental

The title complex was prepared by the addition of Ni(CH₃COO)₂--4H₂O (4.98 g, 20 mmol) to an aqueous solution of (4-oxo-4Hpyrindin-1-yl)acetic acid (58.40 g, 40 mmol); the pH was adjusted to 7 with 0.2 M NaOH solution. Green single crystals were obtained from the filtered solution over several days. CH&N analysis: calculated for

Figure 1 View of the title compound, with 50% probability ellipsoids for the non-H

DOI: 10.1107/S1600536804007986

© 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

 $[Ni(H_2O)_6](C_7H_6NO_3)_2.2H_2O$: C 33.16, H 5.57, N 5.52%; found: C 33.02, H 5.68, N 5.35%.

Crystal data

$D_x = 1.585 \text{ Mg m}^{-3}$
Mo $K\alpha$ radiation
Cell parameters from 6398
reflections
$\theta = 3.6 - 27.4^{\circ}$
$\mu = 0.99 \text{ mm}^{-1}$
T = 293 (2) K
Prism, green
$0.36 \times 0.25 \times 0.18 \text{ mm}$

Data collection

Rigaku R-AXIS RAPID	2423 independent reflections
diffractometer	2237 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.027$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.5^{\circ}$
(ABSCOR; Higashi, 1995)	$h = -16 \rightarrow 16$
$T_{\min} = 0.718, T_{\max} = 0.842$	$k = -16 \rightarrow 16$
10195 measured reflections	$l = -8 \rightarrow 8$

Refinement

$w = 1/[\sigma^2(F_o^2) + (0.0539P)^2$
+ 0.226P
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\text{max}} = 0.35 \text{ e Å}^{-3}$
$\Delta \rho_{\min} = -0.77 \text{ e Å}^{-3}$
Extinction correction: SHELXL
Extinction coefficient: 0.37 (1)

Table 1 Selected geometric parameters (Å, °).

Ni1-O2W	2.047 (1)	O2-C1	1.263 (2)
Ni1-O3W	2.050(1)	O3-C5	1.278 (2)
Ni1-O1W	2.057(1)	C3-C4	1.358 (2)
O1-C1	1.243 (2)	C6-C7	1.362 (2)
O2W-Ni1-O3W	88.31 (4)	O2W-Ni1-O1W	92.50 (6)
$O2W-Ni1-O3W^{i}$	91.69 (4)	O3W-Ni1-O1W	88.71 (5)
$O2W-Ni1-O1W^{i}$	87.50 (6)	N1-C2-C1	114.0(1)
$O3W-Ni1-O1W^{i}$	91.29 (5)		

Symmetry code: (i) -x, 1 - y, -z.

Table 2 Hydrogen-bonding geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
01W-H1W2···O2	0.856 (19)	2.02 (1)	2.839 (2)	162 (2)
01W-H1W1···O4W ⁱⁱ	0.841 (9)	1.88 (1)	2.722 (2)	174 (2)
02W-H2W1···O1 ⁱⁱⁱ	0.843 (9)	1.854 (9)	2.694 (2)	174 (2)
02W-H2W2···O3 ^{iv}	0.840 (19)	1.90 (1)	2.739 (2)	170 (2)
03W-H3W1···O2 ^v	0.847 (9)	2.08 (1)	2.848 (2)	150 (2)
03W-H3W2···O2 ^{vi}	0.850 (9)	1.86 (1)	2.696 (2)	170 (2)
04W-H4W1···O3 ^{vii}	0.857 (9)	1.98 (1)	2.795 (2)	159 (3)
04W-H4W2···O3 ^{iv}	0.850 (9)	2.16 (1)	2.975 (2)	162 (3)

Symmetry codes: (ii) $-x, \frac{1}{2} + y, \frac{1}{2} - z$; (iii) $x, \frac{3}{2} - y, z - \frac{1}{2}$; (iv) 1 - x, 1 - y, 1 - z; (v) -x, 1 - y, 1 - z; (vi) $-x, y - \frac{1}{2}, \frac{1}{2} - z$; (vii) $1 - x, y - \frac{1}{2}, \frac{1}{2} - z$.

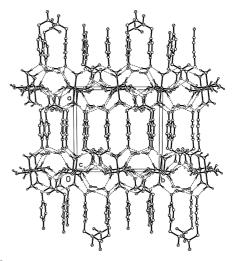


Figure 2 Packing diagram of the complex, viewed along the c axis

H atoms bonded to C atoms were placed in calculated positions, with C-H = 0.93 or 0.97 Å and $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C})$, and were included in the refinement in the riding-model approximation. The H atoms of water molecules were located in Fourier difference maps and refined subject to the restraints O-H = 0.85 (1) Å and H···H = 1.39 (1) Å, with $U_{\rm iso}({\rm H}) = 1.5 U_{\rm eq}({\rm O})$.

Data collection: *RAPID-AUTO* (Rigaku Corporation, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC and Rigaku Corporation, 2002); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL*97.

We thank the National Natural Science Foundation of China (No. 20101003), Heilongjiang Province Natural Science Foundation (No. B0007), Educational Committee Foundation of Heilongjiang Province, Heilongjiang University and University of Malaya.

References

Gao, S., Zhang, Z.-Y., Huo, L.-H., Zhao, H. & Zhao, J.-G. (2004). Acta Cryst. E60, m444–m446.

Higashi, T. (1995). ABSCOR. Program for Absorption Correction, Tokyo, Japan

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.

Rigaku Corporation (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). *CrystalStructure*. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.